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Needs for a 3D representation

o Coupling and strong correlation among all the three directions:
radial clousure and axial convection

o Assesment of the different contributions to the anomalous transport:
- fluctuation-induced
- wall-induced
The two contributions does not simply add each other

o Don’t need any assumptions as for 2D: real self-consistent simulation

o Huge progress in HPC and Computer Technology in the last years: PIC scales
well with the number of processors




Inconsistencies between Theory/Models and Experiments

o ExB electron drift instability seems explain the anomalous transport (no agreement
on the instability amplitude and saturation mechanisms among the different
models)...nevertheless discharge current strongly depends from material wall

o Experiments [2] observe a standing wave (probably result of two counterstreaming
modes) while theory/models shows it moves with ion acoustic velocity.

o A moving wave is not compatible with the anomalous erosion.
o Counterlogical: with no-emissive wall material the electron current is larger [3].
o The way to distinguish different contributions to the mobility with different

adjustable coefficients fail to match correctly the ion velocity profile measured by
LIF technique [4].
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Geometrical Scaling

o Impossible to atford a 3D problem with real
dimensions: 1000°> mesh nodes.

o Better than other scaling (ion mass and/or
vacuum permittivity) since it is based on HT
scaling down rules.

o Every dimension is reduced by f increasing
by the same f magnetic field and neutral
density.

o Knudsen (the ratio of the electron mean free
path length to the characteristic size of the
thruster) and Hall (the ratio between the
electron gyro-frequency, and the electron-
heavy particle collision frequency) parameters
keep constants.

o Current is reduced by f?> (current density
remains the same).

o We have used =10 — SPT10
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3D(1,0,z) Model

0 3D(1,0,z) / discharge channel
- Domain: - radial from inner to outer wall;
- azimuthal: 7t/2
- axial from anode to exit plane (plume not included)
- Initial condition: start from scratch
- Injection condition: steady-state electron current control method
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— D n:node _ D nianode _ (D niexitplane _ D n:xitplane)

e,inj

f_s

- Field solve: E negligible in the material |— =—
- electron-atom MCC module Ir &
- electron-wall SEE module

- Realistic ion mass, vacuum permittivity

- Assumption: - fixed potential (cathode) at the exit plane

- geometrical scaling
- Numerical parameters: - N, =N xNgxN,=100x128x160 (grid points)
- N,/N,=50 (particles per cell)




Results — 3D Map
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Results -V, E,, n, in (0,z) plane
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Results — V along 0 direction
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Results — V, n, in (1,0) plane
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Important radial component due to wall current closure / geometrical scaling:
Feeding back the ExB drift instability
Sheath is azimuthally modulated -> creates preferential location for ion erosion
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Results — Electron channeling in (1,0) plane
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Results — Saturation mechanism: ion phase space
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Results — Contributions to anomalous transport

Quantity (scaled values)

Electron current injected at exit plane
I inj (X102 A)

(x102 A)
Electron current atr;, I, ;, (x102 A)

in “e,in
SEY atr.

in Yin

Ion beam current 1.

i,beam

Electron current at r, I, ., (X102 A)

SEY at rout Yout

Max electron temperature T (eV)

e, max

Max Potential fluctuation amplitude
o, (V)
Max density fluctuation amplitude
(dn/n)_..,

CASE 1:
3D(1,0,z)
w SEE

3.1
0.43
0.64
0.65
0.67

20

10

0.23

CASE 2:
3D(1,0,z)
w/o SEE

2.6
0.15
/
0.2
/
21
15

0.33

CASE 3:
2D(r,z)
w SEE

3.1
0.24
0.66
0.41
0.71

20

/
/



Conclusions

o Importance of having a detailed up to kinetic level model:
deviation from Maxwellian has important macroscopic effects
(instability, wall losses and sheath, ionization rate, etc.)

o Low-dimensionality models help to understand limitations of using fixed
external parameters (that otherwise play a relevant role due to strong
correlation among the different dimensions)

o The ExB EDI wave becames a standing wave probably die to the scaling
o Strong radial component due to current-closure condition on lateral walls
o Azimuthal fluctuating field has double structure along r

o Saturation mechanism: ion heating and rotation before to be convected.

o Secondary electron emission helps to reduce the amplitude instability
(thermostatic effect)




